思考的秘密
当我静下心来认真地琢磨时,我得出这样一个结论:他们一定在思考什么大秘密。可是这是一个什么秘密呢?竟会令人像是着魔一般。我坐起来,看见麦力靠着一株大树快睡着了,“麦力,我想到一个好办法。”麦力一下跳了起来,“什么办法?”“我还以为你睡着了呢,他们不是不跟咱们说话嘛,现在咱们找一个自言自语的家伙,听听他在说些什么。你看怎么样?”“对呀,我以前怎么没想到。”“你想到了还叫我来干什么。”
说做就做。我们在村子里转,看谁在自言自语。
我们终于看见一个二十岁左右的年轻人自己唠唠叨叨的在说什么。我俩赶紧绕过一片西瓜地,反正他也不理我们,走近年轻人身边时我们也沉默着不说话,像是没事人一样。竖起耳朵听。
“我怎么这么笨,连这么简单的问题也要想半年,我还有没有希望?”到底是什么问题快说出来呀,我俩更着急,快往下说。
“这怎么可能,学的东西越多、知识越多,人反而更无知了?为什么?”什么越多就更无知?他在琢磨什么问题?
“一个圆大,一个圆小。一个圆大,一个圆小……”
麦力忽然自言自语道:“一个圆比一个圆大,一个圆比一个圆小,嗯,原来是这样。”
那个年轻人抬眼看了麦力一眼,向远处走了几步,没理我们。麦力接着说:“对,就是这样,如果这个圆大一点,那么另一个就……对,没问题。啊,歇一会儿。”然后走到我跟前背对着那个年轻人,“哎,那家伙过来没有?”我的余光看见那个年轻人犹豫着想过来,又停下了,就赶紧对着麦力大声说:“对呀,你怎么想出来的?太奇妙了。”然后我们压低声音,假装议论着什么,不时地表现出喜悦的样子。那个年轻人终于忍不住了。
“两位好。”
“你好,”然后我和麦力继续讨论,“你的问题想得怎么样了?”“差不多有结果了。”
年轻人按捺不住,“请问两位思考的问题一定很难吧?答案通过了又可以晋级了,真是恭喜呀。”麦力赶紧说:“多谢多谢,同喜同喜。看你的样子也差不多了。”
“唉,别提了,这一个问题都快半年了,几次想出的答案都被驳回了。再这样下去,我是没什么希望了。”他的意思好像是说,问题都是从某个地方传出来的,回答成功的会增加级别,然后最终能得到什么东西。可是我们什么都不知道,怎么跟他周旋呢?
这时麦力说:“其实我的问题也折磨了我很长时间了,不过这位朋友是从一个遥远的国家来的,我就与他讨论了一下,没想到居然找到了思路。真是万幸。”我和麦力交换了一下眼神,意思是我什么时候和你讨论过问题,万一被人戳穿了怎么办?可是麦力不管我的暗示,接着说:“这位朋友的思路与咱们大不相同,也可能是咱们太执著于答案了,或者就是当局者迷吧。反正他也不会争什么级别,你要是愿意可以与他交流交流。如果不方便我可以回避一下。”
“哎,不用回避,不用回避。我知道我的级别一定没您高,只是大家都忙着想自己的问题,争取升级,那还顾得上提携后进。难得您愿意帮我,我高兴还来不及呢。”年轻人原来也挺喜欢交流的嘛。
麦力低头沉思了一小会儿,“那好吧,你就给这位朋友说说吧。”
我忙说:“不敢、不敢,大家一起交流、探讨。”我其实是生怕提不出任何建议,这可令人家大失所望了。年轻人邀请我们一起到他家坐下慢慢谈,好吧,既来之则安之。
这个年轻人叫索斯,他家是一幢两层的阁楼,一楼的家具豪华得很,二楼则简单了许多但很精致。他们有自己磨的咖啡,还有自己种的茶。我还是习惯喝茶,没想到的是索斯家里居然对茶道也蛮有研究的。
他听说我爱喝茶,就下楼从储藏室里拿出一个大包来,拆开两层塑料纸,揭掉封缝的胶条,打开大铁罐的盖儿、又一个盖儿,然后取出一些茶叶让我看看怎么样。我一看颇像我国福建省产的银针白毫,“这很像我们国家一个地方产的茶叶,我们叫它做银针白毫。不知是不是一种?”索斯高兴地说:“不错,我们就叫做银针。听老人说原产于国外,不知道是不是你们国家,但看来差不多。你们等一下。”
麦力笑笑说:“他可是找到人说话了,又不知拿什么好东西去了?”一会儿索斯回来了,手里拿着一套茶具,“你看这套茶具怎么样?”我一看,对刚才的白毫又多了几分信心,“这个应该是黑瓷,也曾在我国一些地方盛行过。黑盏配白茶,绝妙呀!”据说黑瓷茶具在我国宋代时盛行于福建一带,而银针白毫又产于福建,所以我想也许这个地方的确有前辈曾经去过中国。于是三人就边喝茶边聊了起来。
大圆与小圆大圆与小圆
知道得越多就越无知。
——知识悖论
索斯迫不及待地说:“我在半年前得到的问题是,一个人知道越多就会越无知。”
原来是这样一个故事:曾经有一位非常博学的人,别人有什么问题都来求教他。但他却总是发愁,有一次他的学生就问他为什么总是不高兴。
他说,“你们有问题就来问我,其实只有我自己知道我多么无知。”
学生感到很奇怪,“老师,大家都知道你是最博学多识的人,你怎么说自己无知呢?要是连你也是无知的,那我们不是更一无所知了吗?”
老师随手在地上画了两个圆,一个大一个小。他说,“大圆里面是我的知识,小圆里面是你的知识。我的知识的确比你多,可是你知道圆外面是什么吗?”
那位学生说,“圆的外面?什么都不是呀。”
老师略微笑了一下说,“其实外边就是我们不知道的事物,你看哪个圆的周长大?”
“当然是大圆了,难道不是?”
“是大圆,没错,可是你看,它接触的未知事物是不是更多。”
“啊,对呀,可是我还是不太明白,为什么知道得越多反而越无知了呢?”
索斯就是要解决这个问题,为什么知识越多反而会越无知?
麦力说:“按理说,知识越多当然无知的就越少,可是这位老师的比喻也很恰当,的确是大圆所接触的未知事物更多一些。但是难道知识越少反而更‘有知’吗?”说完两个人都把目光转向我。
我也有些奇怪,“在我们国家有句俗语‘书山有路勤为径,学海无涯苦作舟’,如果到头来还要变得‘更加的无知’。我们不停的‘苦作舟’又图什么呀!可见在这个比喻中一定存在某些不对的东西。”
索斯和麦力都点点头表示同意,可是在什么地方出了问题呢?
索斯说:“我这半年都在想这个问题,明知道这种说法不对,可就是说不出来。但我觉得应该是这个圆周的比喻有问题,圆周越大——知识就越多,这没问题,但是如果外面是未知的事物——那么的确就知道得越少了。”
麦力问:“为什么就越少?”
“未知的东西越多当然知道的就越少。”
一点灵光在我的脑中闪现,“好像不对……”
索斯激动地望着我,“怎么不对?”
我努力地集中精神试图抓住那一点灵感。我们三个人都安静下来,各自琢磨起来。
我努力地在想,“为什么一个人未知的东西越多我们就会说这个人越无知?……我们说这个人越无知,难道这个人就无知吗?……谁来决定一个人是不是无知?……谁能决定一个人是有知的——博学多识的。我们是谁?别人!……别人怎么知道另一个人是不是有知,就好像别人怎么知道我是无知还是有知呢?……通过什么标准来做这样的判断呢?……标准,什么是这里的标准?……老师说‘我比你的知识多’——老师还是承认了自己的知识多。这是一个标准。……‘所以我比你无知’——这是因为‘我接触的未知事物多’。‘我接触的未知事物多’——那么老师是知道自己接触了未知事物,也就是说老师知道存在这些未知事物,虽然并没有掌握这些未知事物。……而学生因为知识少,反而接触的未知事物少,结果反而不无知?……不对这里有问题!”
我喘了口气,“未知的东西多并不意味着知道的少!用数学的话说就是:它们之间并不成反比。不但不成反比,恰恰是成正比——未知的东西越多说明此人知道的越多,正因为知道的多,所以接触到更广泛的领域,而在这些领域中的知识还是没有被此人掌握的。”
我不知道自己想的对不对,但是为了不要忘记这个思路,我赶紧告诉他们俩:“你们先不要打断我,我说的你们都先记着,等我说完了咱们再讨论。”我赶紧将上面的想法说了出来。
麦力说:“好像有点意思了,问题似乎出在我们怎么理解‘有知’和‘无知’上。”
索斯也说:“没错,什么才是两者的标准呢?”
我们三个人赶紧拿出一张纸,试着描述一下。把这张纸当作所有的知识,再画一个圆,圆的里面表示我们已经获得的知识,外边表示我们还不知道的知识。这就是故事中老师讲的意思了。他说由于圆大,所以接触的未知事物就多,这没错,他又说,所以就更无知,不对了。知道未知的事物多并不等于自己知道的事物就少,而“无知”并不是对自己已经拥有的知识的评价标准,所以我们不能用未知事物的多少来衡量已知事物的多少,而只能用已知的事物作为标准来衡量。
好比说,一个人知道的所有知识另一个人都知道,而第二个人又知道一些第一个人不知道的知识,那么我们就可以说第一个人比另一个人“更无知”。我们就不能拿一个没人知道的事来衡量谁无知,比如外星人是否存在?在这个问题上每个人都显得很无知。但是如果一个人知道自己对这个问题很无知,或者知道这个问题不是自己能解决的,并不能说明他就会比另一个根本不知道这个问题的人更“无知”。
让我们再回来看手上的纸,这里一定要记住千万不能把圆的周边作为“无知”的多少,真真的无知是那个封闭的圆周线以外的整个空白。
我们三个做出最后的总结:在这个奇怪的比喻里我们不知不觉地用了两个标准,一个是有知——这个标准是相对的,即不同的人之间经过比较后才能说谁的知识更渊博,比如现在多以一个人受教育的程度来衡量这个人的知识量,这是社会定的一个标准——用于衡量一个人掌握了多少知识的标准。当然这个标准并不是衡量一切知识的标准,而只是“有知”标准中由某个社会制定的或者是约定俗成的一个标准,同样的道理,不同的社会用于衡量“有知”的标准也是不完全相同的。
但还有另一个标准,衡量“无知”的标准——这个标准是绝对的,即它是不能被制定出来的。原因是“无知”的事物是无法计算的,因为如果对人类来说是“无知”的事物,那么我们就不可能知道有哪些、有多少事物属于“无知”。假如说我们能制定一个衡量“无知”的标准,那也意味着我们已经知道这些“无知”是什么了,剩下的问题就是如何解决这些“无知”了,那么这些事物就不是“无知”的了。
这也令我想起爱因斯坦曾说过类似的话:提出一个问题往往比解决一个问题来的更深刻。因为提出一个问题实际上就是从“无知”向“有知”迈进了一大步,而解决一个问题则是从“知之不多”向“知之甚多”前进了一步。
在上面的比喻中老师用了两个标准:已有知识的标准——大圆的面积大——我的知识比学生多;未知事物的标准——大圆接触的未知事物更多——老师更无知。
我们不停的努力,就是为了变得更加有知。
不过索斯得到的这个问题也许还有另外的意思,比如做人要谦虚,或者是一位智者想告诉人们:当你感到未知的事物逐渐增加的时候,不要苦恼更不要奇怪,因为你变得更博学了,你头脑里的知识更多了。
我们三个为“更加无知”干了一杯!
斯泰罗先生斯泰罗先生
索斯很激动,可是也略带犹豫。
索斯说:“你们帮我想出答案了,可是我不知道长老会能不能通过?”
麦力问他:“你是不是还怀疑答案不对?”
“不是,我是担心长老会如果知道不是我自己思考得来的,那他们就不会让我晋级了。”
“你可以不告诉他们呀。”
“不行,我不能骗他们。”
麦力的脸红了一下。
我急忙说:“如果他们不给你晋级,结果会怎样?”
索斯说:“也没什么,他们会给我出一个同级的问题,但那样我就不能获得更高级的问题了。”
“更高级的问题?那是什么问题?”
索斯奇怪
小提示:按 回车 [Enter] 键 返回书目,按 ← 键 返回上一页, 按 → 键 进入下一页。
赞一下
添加书签加入书架